MTH220 Summary Sheet

Tags
Created by Ho Han Sheng
¥ Central Limit Theorem Applications (CLT)

If X1, Xo, ..., X, are independent identically distributed random variables

With mean p and variance o2, then the sample mean

2
YNN(M,U—)
n

for large n
¥ Mean
E(X)=p
¥ Variance
2
—_ o
V(X)=—
*) =

¥ CLT Properties

If random samples are drawn from a population on different occasions, then the individual
observations and the sample means will very probably be different. The sample mean is itself a
random variable and its distribution is called the sampling distribution of the mean.

CLT states that: For large n, the sampling distribution of the mean for samples of size n from a
population with mean p and variance o? is approximately normal with mean M and variance
02/71 . The approximation improves as the sample size increases.

¥ Sample Total

The distribution of the sample total has mean nu and variance no?and is also approximately
normal. This means that the distribution of the sum of a large number n of independent identically
distributed random variables is approximately normal.

¥ Expected value of sample total and sample mean
E(T,) =np
E(X,)=p

¥ Variance of sample total and sample mean
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¥ Standard error of the mean

This is the standard deviation of the sampling distribution of the mean

o/Vn

¥ Normal approximation for Binomial Distribution
Binomial distribution B(n, p) may be usefully approximated
By a normal distribution with same mean and variance, N (np, npq)

When both np and nq are at least 5

(@=1-p)

X ~ B(n,p) = X ~ N(u=np,0® = np(1 — p))

¥ Continuity Correction

When we approximate discrete random variable X by a normal random variable Y, we need to
apply this continuity correction

Number line visualisation
P(X <z)~P(Y <z+0.5)

P(X=z)~Pzx—05<Y <z+0.5)

Desired information With continuity correction
P(X =x) P(x-05<X<x+0.5)

P(X <x) P(X <x+0.5)
PX<x)=PX<x-1) PX<x-1+0.5)

P(X = x) P(X=x-0.5)
P(X>x)=P(X=x+1) P(X>x+1-0.5)
Pla<X<b) Pla—05<X<b+0.5)

¥ Normal approximation for Poisson Distribution
Poisson distribution: Poisson(u) may be usefully approximated by
A normal distribution with same mean and variance, N (i, 1)

When i is at least 30
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X ~ Poisson(p) = X ~ N(p, p)

Same continuity corrections must be applied here
¥ Confidence interval for the mean of a normal distribution with known variance
Suppose X with a normal distribution N (11, 0°2)

The variance o2 is known, W is the unknown parameter

Let X, X, ..., X,, be the data collected from X, in a random sample size n

X isthe sample mean

Sample mean provides an estimate of the population mean

However, different samples drawn from the same population will usually produce different
estimates

Confidence interval for the parameter y with confidence coefficient (1 — «)
or A (1 — a)100 percent confidence interval
- o = o
“u) =X —zap—=, X + Zajp——
(N y M ) < a/2ﬁa a/Z\/ﬁ
Generally, population standard deviation o is not known
We will have to use sample standard deviation s to estimate
This gives rise to the approximate large-sample confidence intervals
¥ Z-value
e.g 95% confidence interval = (1 — 0.05)100 percent confidence interval
Where a = 0.05

Za/2 = 20.05/2 = 20.025

From normal distribution table (z-value table),
Find z-value for probability of (1 — 0.025) = 0.975
Hence 2,/2 = 1.96
¥ Confidence interval for the mean of a population with unknown distribution
We can use central limit theorem (CLT) for large sample approximation

Replacing population variance by sample variance

100(1 — a)% confidence interval for population mean:

MTH220 Summary Sheet



— s — S
)= (X — 2y 00—, X + 249 —
(,u‘ y M ) ( a/2\/ﬁ7 a/2\/ﬁ
Where s = sample standard deviation
¥ Confidence interval for the mean of a normal distribution with unknown variance
Let X, Xs, ..., X,, be a random sample from a normal distribution

With mean p not known and unknown variance o?

To construct a 100(1 — )% confidence interval for parameter p,
We must find ¢, /5 from t-table
Suchthat P(T' > t,5) = a/2

Corresponding to n — 1 degrees of freedom

Given random sample of size n, sample mean x and sample standard deviation s
From a normal distribution with mean p

100(1 — )% confidence interval for

4 _ s _ s
(u,p") = <x—t%,m+t%>
Where t is the (1 — a/2) quantile of t-distribution with (n — 1) degrees of freedom
¥ t-value
e.g 95% confidence interval = 100(1 — 0.05)% confidence interval
Where o = 0.05

tas2 = to.05/2 = lo.025

From t-table,
Find t-value for quantile of (1 — 0.025) = 0.975
Which is a column of 0.025
v is degrees of freedom
e.g. sample size 5 — 1 = 4 degrees of freedom
Hence t(4) = 2.776

¥ ClI for large sample size and unknown variance

Where degree of freedom for ¢ is large (not in the table), can approximate results with the Z-test
instead

i.e. replace t value with z value

¥ An approximate large-sample confidence interval for a proportion
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Approximate 100(1 — a)% confidence interval for a proportion p
Obtained by observing x successes in a sequence of n independent Bernoulli trials
Each with probability of success p

e.g. proportion/ percentage of people in a population that own a smartphone

Where p = x/n is the estimate of p

and z is the (1 — a/2) quantile of the standard normal distribution

This confidence interval is valid when both np and n(1 — p) are least 5
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Table 2.1 Upper percentage points for the Student's ¢ distribution

0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.001 0.0005

1) 0325 1000 3078 6314 12706 31821 63657 318309 636.619
2| 0289 O0B16 1.BR6 2920 4.303 6.965 9.925 22327 31.599
3| 0277 0765 1.638 2353 3182 4.541 5.841 10,215 12.924
4| 02711 0741 1.533 2132 2.776 3747 4.604 T.173 8.610
5| 0267 0727 1476 2015 2.571 3365 4,032 5893 6.869
6| 0265 0718 1440 1943 2447 3143 3.707 5.208 3.959
7| 0263 0711 1.415 1.895 2.365 2908 3499 4,785 5.408
8| 0262 0706 1397 LE6D 2306 2.896 3355 4.501 5.041
9

0261 0703 1383  L.B33 2.262 2821 3250 4.297 4.781
10| 0260 0700 1372 1812 2.228 2.764 3169 4,144 4.587

11| 0260 0697 1363 L79% 2.201 2718 3106 4.025 4.437
12 | 0259 0693 1356 1.782 2.179 2.681 3.055 3930 4.318
13| 0239 (0694 1350 L1771 2.160 2,650 3012 3.852 4221
14 | 0258 0692 1345 1.761 2.145 2.624 2977 3,787 4,140
15| 0258 0691 1.341 1.753 2.131 2.602 2947 3733 4073

16 | 0258 0690 1337 1746 2.120 2.583 2921 3.686 4.015
17 | 0.257 0689 1333 L7400 2.110 2.567 2.898 3646 3.965
18 | 0.257 0688 1330 1734 2.10 2.552 2878 3610 3.922

19| 0257 0688 1328 1.729 2.093 2.539 2.861 3.579 3.883
20| 0257 0687 1325 17925 2.086 1528 1845 35352 3.850
C 21| 0257 0686 1323 1721 2.080 2518 2831 3.527 3819

22| 0256 0686 1321 1717 2.074 2.508 2819 3.505 3.792
23 | 025 0685 1319 1714 2.069 2.500 2.807 3.485 1768
24 | 0256 0685 1318 1711 2.064 2492 2797 3467 1745
25 | 025 0684 1316 L1708 2.060 2485 2,747 3450 3.725

26| 025 0684 1315 LT 2.056 2479 2,779 3.435 3.707
27 | 025 0684 1314 1,703 2.052 2473 27171 3421 3.680
28| 0256 0683 1313 L7010 2.048 2467 2.763 3408 1674
29| 025 0.683 1.311 1.699 2.0435 2.462 2.756 3.396 1.659
30| 0256 0683 1310 1697 2.042 2457 2.750 3,383 3.646

35| 0255 0682 1306 1.690 2.030 2438 2724 3.340 3.591
40 | D255 0681 1303 1624 2.02] 2423 2,704 3.307 3.551
60 | D254 0679 1296 1.67) 2.000 2.390 2.660 3.232 3.460
120 | 0254 0677 1,280 1,658 1.980 2.358 2,617 3.160 3373
co | 0253 0674 1.282 L645 1.960 2326 2576 3.090 3.291

¥ One-way ANOVA test
Total variability in the observations (Total sum of squares; SST)
is partitioned into 2 components:
« The variation among the treatment means (treatment sum of squares; SSTR)

e The variation among the experimental units within treatments (error sum of squares; SSE)
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¢ The variation (variance) among the means of the 4 labs

e The variation (variance) among the independent observations within a lab

Essentially,

SST = SSTR + SSE

Error of sum of squares (SSE) = SST - SSTR

Source df 55 MS F statistic
Treatment k-1 85 Ms L L —
tremtment Freatment Fy= S,
(55TR) (MSTR)
Error N-k SSurrar MSarror
(S5E) (MSE)
Total N-1 S8yt
i
(S5T)

k
SSTR = SStreatment - an (fz - E)z
i=1

k
SSE = SSeor = »_(n; —1)s]

%
i=1
¥ Mean square for treatments

Found by dividing the sum of squares by the corresponding number of degrees of freedom

MSTR = S5TR
k-1
where k = number of treatments

¥ Mean square error

An unbiased estimator of the common population variance o2 within each of the k treatments

MSE:SSJ
N -k

k
where N = > n; = kn, ifn; = nforalli
i=1

v F-statistic

We test the equality of the population means by comparing 2 variability components
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o Within Groups Variability (SSE)

Variability about the individual sample means within the k groups of observations

e Between Groups Variability (SSTR)

Variability among the k group means

We are interested to test the null hypothesis that the treatment means are equal

Hence our hypotheses are

H():/,Ll:/.,l,gz...:y,k

H, : at least one y; is different from the others

The F-statistic is the ratio of the mean squares for treatment to error:

" MSTR
°" MSE

Hj : No difference in treatment means

If By > Firitical, the null hypothesis is rejected and we can conclude that there are

differences in the treatment means at the chosen level of significance
v Explain the difference between type | and type Il errors
¥ Type | error
Rejecting the null hypothesis when null hypothesis is true
Probability of type | error is denoted by «
¥ Type Il error
Accepting the null hypothesis when null hypothesis is false
Probability of type Il error is denoted by 3
v Define the critical regions
This is the rejection region for H
Size of the critical regions = probability of type | error = o
Where « is the level of significance of the test
v Z Test

This is to test on the mean of a normal distribution, with known variance

i.e. mean L of a single normal population where variance of population a? is known

The test statistic is given by:
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If the null hypothesis Ho : u = o is true
The probability that the test statistic Zp will fall between —2Zq/2 and +24/2 is l—«

i.e. the probability of Z falling in the regions Zo < —2z,/2 or Zo > +24/2 is o/2

Critical regions

Acceptance region

This implies that if null hypothesis is true, it will be unusual and rare to encounter a sample with
an observed test statistic that falls in the tails of the Z distribution

The sample value of X is considerably different from 1
Hence H) is false and should be rejected

¥ One-tailed
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Hﬂ:psyo
H1:l|,(::a~‘uU

Acceptance region

/ Critical region a.
f

.

/ A ]

/

o | 1
0 ¥ Ly

Figure 3.2 The critical region for the one-sided alternative hypothesis
Hy:p>u (Z test)

(Source: Page 374, Chapter 8 of textbook Ho, Xie & Goh, 2011)

In this case, if value of Z exceeds +2z,,
Null hypothesis H{, will be rejected
¥ Large sample testing of hypothesis about a population mean
Given a large sample size n (> 30) from a population with mean
Central limit theorem (CLT) can provide an approximate test of the null hypothesis
X —
7=
S/vn
¥ T Test

Test on the mean of a normal distribution, with unknown variance

Given a sample of size n from a normal distribution with mean g and unknown variance o?

The test statistic is:

_ X
~ s/v/n

Where X is sample mean and s is the sample standard deviation

to

¥ Two tailed
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Critical regions ptance region

o2 /2

an. it 28 sz, n4

¥ One tailed
Acceptance region
Critical region o
| ! T
0 tu, n-1
Acceptance region
Critical region oL
| | T
+tu., n-1 &

¥ Using R

# mu argument gives value which you want to compare
# with the sample mean
t.test(dataset, mu=k)

By default, R performs a two-tailed test

For one-tailed, alternative argument must be set as "greater"” or "less"
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t.test(dataset, mu=k, alternative="less", conf.level=0.95)

Addn.: default 95% confidence interval for population mean is included with output
To adjust size of Cl, use conf.level argument

¥ Example

dataset = c(171.6, 191.8, 178.3, 184.9, 189.1)
t.test(dataset, mu=185, alternative="less", conf.level=0.95)

¥ Construct confidence intervals in association with hypothesis testing
Null hypothesis Hy : 6 = 6 can be tested against two sided alternative hypothesis H; : 6 = 0
Through using data to construct a confidence interval (0’,0*) for parameter 6
For a test at « significance level, a 100(1 — a)% confidence interval should be used

If B is not inside the confidence interval, the null hypothesis can be rejected in favour of the
alternative hypothesis

If By is inside the Cl, then there is insufficient evidence to reject the null hypothesis
¥ Testing population proportions

Sometimes, instead of population means, we are interested in estimating the percentage (or
proportion) of some group with a certain characteristics

, . [p(1—P) | [D(1 - P)
(p,p") = <p—2’a/2 T)p+za/2 .

Where p = X /n

¥ Z as test statistic

7 b —Do
Op
Where ag =p(1 —p)/n
Hence,
po(1 —po)/n

If null hypothesis Hy : p = py is true,
Then X is approximately normal with mean np, and variance npo(l - pg)

Then,
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T — NPo

Al
npo(1 — po)

If random variable X follows a binomial model with parameters n and p
Then approximate two-sided (1 — «)100% confidence interval for p is:
5 p(1 —p)

. p(1 —p)
D—2go\| ———— SPSP+ 20\ ———
n n

¥ Formulate the generic null and alternative hypotheses
Given two populations X7 and X5 with unknown means p; and o

We want to test the difference between the 2 means

Population variances are assumed to be known with values 0% and a%
Also assumed random variables X; and Xy are normally distributed

If non-normal, assume conditions of central limit theorem applies

Sample size of n; drawn from X with sample mean 71

Sample size of ny drawn from X5 with sample mean 72

Assume both random samples are independent

and data within each sample are independently distributed with means p; and pe

A two-sided hypothesis test on the difference in population means as follows:
Hoy :py — p2 = o
Hyip —po # o

Where 1y is a specified difference

Test procedure is based on the distribution of the difference in sample means Yl — YQ

Since,
2 2
¥ ¥ 01 | 9
X1—X2NN<M1—M2,—+—>
st To
The appropriate test statistic is:
X — X, — Ho
ZO = 2 2
(o2 g
2
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The denominator, i.e.:

2 2
o g
1 2
_+_
(5| o

Represents the standard error of the point estimate 71 - 72

If objective is to test equality of the 2 means, then py = 0

¥ Possible scenarios for a hypothesis test

Alternative hypothesis Rejection criteria
Hysp —p, = 1 Zy>Zapor Zy< —Zgp
Hy:p —p, < gy Zy< —Za
Hytp —p, > Zy>2Zy

¥ Confidence interval on the difference in means (variance known)

100(1 — a)% confidence interval on p; — s can be constructed as follows:

2 2 2 2
07 0y 07 03

(L, L") = | 1 — T2 — (2a)2) ol n—2,51 — Ty + (24/2) m T -
Where L~ and L™ are lower and upper confidence limits
Zq /2 1 the upper 100c/2 percentage point of the standard normal distribution
—Zq/2 is the lower 100a/2 percentage point of the standard normal distribution
¥ Perform a two-sample t test
To test the difference in means of 2 normal distribution with unknown but equal variances
Useful in investigating whether the mean values of population are significantly different or not

Or whether the difference in means p; — 2 is equal to a specified value py

2 normal populations with mean values p; and o

2

Both populations have unknown and equal variance o7 = a% = o2

Random samples of size n; drawn from pop 1 and size ny from pop 2

Let {Yl,fﬁ and {s%, S%} be sample means and sample variances respectively

v Assumptions of the test
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« That the variation in the 1st and 2nd population may be adequately modelled by a normal
distribution with means (1 and o respectively and variance o? (equal variance)

o The adequacy of the normal model can be checked by graphical methods or
statistical tests

o Moderate departure from normality does not adversely affect the test procedure using
t-statistics

« That the observations on the two populations are independent of one another.
e That the variance is the same in the two populations** (important)
¥ Hypothesis test that population variances are equal
It is very unlikely that sample variances s% and s% are equal

The questions is: How pronounced must the difference between the 2 sample variances be
before the assumption of equal underlying variances is thrown into doubt

Hence, we can perform a hypothesis test that the population variances are equal
before carrying out t test for the equality of the means
2 2
== == o o
1 2 M1 — Ha2, g

2

¥ Weighted average of the two sample variances 5,

This is an estimate of the common variance

2 (ng —1)st + (np — 1)s3

p

] + Nog — 2
¥ Test procedure

Under Hy : iy — po = o

The following test statistic has t-distribution with 11 + ns — 2 degrees of freedom

X1 —Xo—
t() —_— Ntn1+n272
S L + i
p ny n9

When sample size is large, i.e. both n; and ny exceed 30
Normal distribution procedure based on conditions of central limit theorem can be used

¥ Decision making criteria
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Alternative hypothesis Rejection criteria

Hy: = to= o mpng 2

or rl}""- - ta_n'z.r 2

Hj: By < My fg= — by npmg2

Hl:,u]—pz::-yo fy = by mpeng2

¥ Two-sample t-interval

If n; and ny are the same sample sizes, and X ; and X 5 are the sample means of two
independent samples from normal distributions with means p; and s and common variance

Then 100(1 — )% confidence interval for the difference between means (1 — p2) is given
by:

) - 1 1 - - 1 1
@d9) = (T Xo = e o+ o o= Xa = (o) 2+ )

Where t 3 is the (1 — a/2)-quantile of ¢(n, 4p,—2)
and sy, is the pooled estimate of the common standard deviation
¥ Perform a paired t test
To test for the mean difference in a matched pair of observations

e.g. observations before patient takes a pill vs observations after patient takes a pill

D; is the difference in the i'® matched pair of observation (X;,Y))

D, =X, -Y

Where,
X; - the it observation before an entity is subjected to the treatment

Y, - the ith observation after the entity is subjected to the treatment

Investigate the null hypothesis that the mean difference of the matched pair of observation is 0 or
any specified difference value

Assuming that the observed differences d;,7 = 1,2, ..., n are independent observations on a
normal random variable

With unknown mean g and unknown variance o?

Let Hy : pg = o
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Then the following statistic follows a t-distribution with d.f. =n — 1

d— o
s/vn

One-tailed or two-tailed t test can be carried out depending on the alternative hypothesis

v Confidence interval for the mean difference d
Suppose that the differences are normally distributed with mean d
Given a random sample of n pairs of observations with differences dy, ds, ..., d,,

Sample mean d and sample standard deviation s

The 100(1 — )% confidence interval for the mean difference d is given by:

d-,d) = (d—ty—L,d+t ﬁ)
( ) ( a/Z\/ﬁ + a/2\/ﬁ

Where t, /2 is the (1 — a/2)-quantile of ¢(n — 1)
This confidence interval is exact (?)
¥ Explain the concept and interpretation of p-values

The p-value is a number (p)
Also called the significance probability (SP)

Definition:

Corresponding to an observed value of a test statistic, the SP is the lowest level of significance
at which the null hypothesis could have been rejected.

This quantifies the extent to which the data cast doubt on the null hypothesis
The lower the SP, the more evidence the data provides against the null hypothesis
The higher the SP, the more the data supports the null hypothesis
¥ Procedure
1. Determine the null and alternative hypothesis.
2. Decide what data to collect.
Determine a suitable test statistic and its null distribution.

Collect data and calculate the observed value of the test statistic.

> W

5. ldentify all other values of the test statistic that are at least as extreme, in relation
to the null hypothesis, as the value that was actually observed.
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6. Calculate the significance probability, which is the probability, under the null hypothesis, of
those values of the test statistic identified in Step 5.

7. Interpret the significance probability.
8. Report clearly the conclusion to be drawn from your test

¥ Rough interpretations

Significance Probability p Rough interpretation

p=0.10 little evidence against Hj
0.10=p=005 weak evidence against H,
005=p=001 moderate evidence against H
p=001 strong evidence against Hy

¥ Comparing Two Proportions

For observations made on 2 independent binomial random variables
Xy ~ B(ni,p1) X2 ~ B(ng,ps)

We can test for the equality of two proportions

Where,

Hy :p1 = po

The test statistic is:

For large values of ny and no,

An approximate null distribution of D is:
. of 1 1
wosn-n(L+ L))
s\ N9

X1+ Xy
ni + Ng

Where

3>
Il

Hence,
X X X X 1 1
Vel (e G )
Ny + No ni + Ny n ng
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¥ Explain linear regression model

Statistical models that reflect the way in which variation in an observed variable (e.g. height)
changes with one or more other variables (e.g. age) are called regression models.

Regression analysis is the process of determining how a variable Y is related to one, or more
variables X1 s Xg, X3, ceey Xk

There are several terminologies for
X :inputs / factors / regressors / predictors / explanatory variables
Y : output / response / dependent variable
¥ Usefulness of linear regression model
We can study the relationship between variables

and try to explain or predict the behaviour of the response variable in terms of the behaviour
of one or more other explanatory variables

¥ Regression models

¥ General regression model

When the distribution of r.v. Y is related to the value taken by some associated variable
X

Then the relationship can be represented by a general regression model:
Y, = h(X;) + W,

Where h() represents some function

and (W;) s are independent r.v. with zero mean

¥ Regression Curve

¥ Linear Regression Model

Where Y depends linearly on x
Yi=a+ Bz + W,

Random variables W; are called residuals
2

They are independent with zero mean and constant variance o
¥ Regression line

y=oa+pz

¥ Explain the method of least squares
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Suppose a linear relation between variables X and Y in the form of:
Y=a+pzr+w

Parameters « and 3 are unknown and need to be estimated

The error term w is assumed to be independent, normally distributed with mean 0 and variance

0.2

« is the y-intercept of the line

B is the gradient of the line

B is the amount of increase (or decrease) in the deterministic component of Y for every 1-unit
increase in X.

The task is to select suitable values for the parameters o and 3 that will best fit the given set of
observations

¥ Method of least squares

Let (z1,¥1), (®2,¥2), -, (Tn, Yn ) be n-observations of the random variables (X ,Y")
Least square estimate of the regression line is: y = & + /S’m
Least square estimate ﬁ of the gradient parameter 3 is:

Sy

rxr

b

Least square estimate & of the constant term « is given by:
T

¥ Sum of Squares of deviations

O S S e L)

Syy = Z Zyz Zyl)
Swy _ Z(x _ :1: szyz chz)n(z.%)

Use equations from above to construct least squares line
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y=a+ Pz

¥ Compute Pearson correlation coefficient

A measure of strength of linear association between X and Y is given by the Pearson
correlation coefficient, r

7 is dimensionless

Sign of r indicates whether the relationship between 2 variables is positive or negative

Absolute value of r gives a measure of strength of linear association between the variables
Further 7 is from zero, the stronger the relationship
i.e. closerto +1 or -1

¥ R code

cor(x, y, method = "")

¥ Coefficient of determination

Another way to measure the usefulness of the model is to measure the contribution of X in
predicting Y

Interpreted as "proportion of total sample variability explained by the linear relationship"

We can calculate how much the errors of prediction of Y were reduced by using the information
provided by X

This is the square of Pearson correlation coefficient

’I°2

¥ Interpret various strengths of correlation
Correlation does not equal causation
Although there might be a reasonably strong association between 2 variables
The data does not say anything about why they correlate to each other
There may be a multitude of explanations as to why
e.g.

+ Changes in X cause changesin Y.
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¢ Changesin Y cause changes in X.
e Changes in some third variable, Z, independently cause changes in X and Y.

e The observed relationship between X and Y is just coincidence, with no causal explanation at
all.

A scatterplot cannot determine which of these explanations is valid

¥ Explain the difference between Pearson correlation coefficient and Spearman rank correlation
coefficient

The spearman method replaces original data by their ranks

Then calculates the Pearson correlation coefficient for the ranks

The Pearson correlation coefficient is a measure of strength of linear association,

While the Spearman rank correlation coefficient is a measure of monotonic association
(increasing or decreasing relationship)

Advantage of spearman's is that it requires only the rank of the data
¥ Analyse results of Wilcoxon signed rank test

Used to compare 2 probability distributions when a paired difference design is used

e.g. consumer preferences for two competing products are often compared by having each of a
sample of consumers rate both products

Ratings are paired on each consumer

Formulated hypotheses are:
Hy : The probability distributions of the ratings for products A and B are identical.

H; : The probability distributions of the ratings differ for the two products.

We replace the individual differences by ranks and test for the zero difference
1. Obtain a data vector d1, d2, ..., dy, of differences with 0s deleted.

2. Order the absolute differences from least to greatest allocating it rank to the 3"
absolute differences.

3. Introduce the sign difference and compute the statistic sum of positive ranks.
4. Obtain SP and state the conclusion.
¥ Detailed explanation

1. Obtain d; which is all the differences d1, d2, ..., d, between x and y

2. Take the absolute values of all d;

3. Rank the values from smallest to largest
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i.e. Given d1 = 3,d2 = —1,d3 = 4,d4 = -2

Rank in ascending order is ds, dy, d1, d3

4. Sum up the ranks of the positive differences (W)
Positive differences here are d, d3
With respective ranks of 3, 4

Hence, W, =17

5. Determine the mean of W with sample size n

44 +1)

z 0

EW,) =

6. Is W, far from E(W,.) ?

¥ Conclusion

Wilcoxon signed rank test rejects the null hypothesis that there are no systematic
differences within pairs

WHEN the rank sum W is far from its mean

Use p-value, critical regions etc.
Under the null hypothesis of zero median difference

For sample size of n (excluding any zero differences)

¥ Random variable W
Observed value: Wilcoxon test statistic w_

¥ Mean (Expectation)

¥ Variance

VW) = n(n+1)2n+1)

Distribution of

W, —EW,)

Z="spw,)
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is approximately standard normal

**The normal approximation is generally adequate as long as the sample size n is at least 16

¥ Example 6.1

Example 6.1

A study of early childhood education asked kindergarten students to retell two fairy
tales that had been read 1o them earlier in the week. Each child told two stories. The
first had been read to them, and the second had been read but also illustrated with
pictures, An expert fstened to a recording of the children and assigned a score for
certain uses of language. Here are the data for five “low-progress” readers in a pilot

study:”
Child | 2 3 4 5
Story 2 0.77 0.49  0.66 0.28 0.38
Story | 0.40 0.72  0.00 0,36 0.55

Difference 037 =023 0.66 -008 -0.17

We wonder if illustrations improve how the children retell a story. We would like to
test the hypotheses

Hy: scores have the same distribution for both stories
H,: scores are systematically higher for Story 2
Dr Larry Gui

Since we cannot be sure that the scores are normally distributed, we use non-parametric
test instead

Because this is a matched pairs design, we base our inference on the differences. The
matched pairs f test gives t = 0.635 with one-sided P-value P = 0.280. Qiégl_ql:_s_of

the data suggest some lack of normality. We would therefore like to use a rank test.
- M-
06 < rr
04 4 ;’
of
!
02 /
/
0.0 4 /
-
02 1
T L .[ L] L] L] L]
-3 -2 -1 @ 1 2z 3
F-R000e

Rank: —dy, —ds, —ds, +d;, +d3
Sum of positive ranks (SP)(W,)=4+5=9

5(6+1
Nw+:%:7-5
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SN EICESTEOE VRN P

24 — V2
W+ ~ Wy ~ N(7.5,3.708%) approx.

Since W, is discrete, we need to use continuity corrections to approximate its normal
distribution

P(W,. >9)~ P(W, > 85)

We treat W, > 9 as occupying the interval from 8.5 to 9.5

Lastly, standardise the equation:

W, —75 _ 85175
3708 —  3.708

P(Z > 0.27) = 0.39358 ~ 0.3

Since probability is not small,
W, = 9is not extremely large compared to puy+ = 7.5

Hence, we do not reject H and conclude that there is insufficient evidence to illustrate
an improvement in the child's ability to retell the story.

¥ Example 6.2 (practice)

Example 6.2

Here are the golf scores of 12 members of a college women's golf team in two rounds
of tournament play. (A golf score is the number of strokes required to complete the
course, so that low scores are better.)

Player | 2 3 4 5 6 7 8 9 100 11 12 "
]
Round 2 94 S ®9 B9 Bl 76 107 8 87 91 BEX 8D ;
Round 1 89 90 87 95 86 81 102 105 83 88 91 79 ¢
Difference 5 -5 2 -6 -5 -5 5 -16 4 3 -3 1§

Negative differences indicate hv:m:r (lower) scores on the second round. We see that
6 of the 12 golfers improved their scores. We would like to test the hypotheses that
in a large population of collegiate woman golfers

Hj: scores have the same distribution in rounds 1 and 2
H,: scores are systematically lower or higher in round 2

A normal quantile plot of the differences on the right shows some irregularity and
a low outlier. We will use the Wilcoxon signed rank test.

¥ Analyse results of Mann-Whitney test

This test is an alternative to testing two independent groups of data when the two-sample t test
may not be applicable because of lack of normality.

This test can be used to test the null hypothesis that the distributions of the populations from
which two independent samples (A and B) were drawn are identical.

Test statistic is U4 , the sum of the ranks for sample A
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nA(nA +np + 1) nAnB(nA +np + 1))
2 ’ 12

UA ~ N(
Where n 4 and npg are the respective sample sizes
Approximation is adequate if both sample sizes are at least 8 - 10
v Steps
1. Pool the two samples and then sort the combined data in ascending order.

2. Allocate a rank to each data value, the smallest being given rank 1. As usual, if two or
more data values are equal, allocate the average of ranks to each.

e.g. rank 10 and 11 = 10.5

e 16 19 21 22 25 31 33 3.7 40
Sample B BE B A B BE B A A A
Rank 1 2 3 4 3 6 7 & 9 105
40 41 48 54 54 61 62 63
Sample B B A A B A B A

Rank 105 17 13 145 145 16 17 18

3. Add up the ranks for each sample. Let:
U4 = sum of ranks for sample A

Up = sum of ranks for sample B
1
Us+Up = §(nA +mng)(na +np +1)

4. Very small or very large U4 imply the rejection of the null hypothesis

They suggest that the A-values are "too frequently" smaller than or larger than B-values

Observed value of U4 may be compared with the null distribution of U4 to get the
significance probability (SP) for the test

¥ Example 6.3
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Example 6.3

Does the presence of small numbers of weeds reduce the yield of corn? Lamb's-
quarter is a common weed in corn fields. A researcher planted corn at the same rate
in 8 small plots of ground, then weeded the corn rows by hand to allow no weeds in
4 randomly selected plots and exactly 3 lambs-quarter plants per meter of row in the
other 4 plots. Here are the yields of corn (bushels per acre) in each of the plots.'

Weeds per meter Yield (bu/acre)
0 1667 172.2 1650 1769
3 1586 1764 1531 1560
. . . = MNormal quantile plots
W i suggest departure from
i L] normality. Samples too
i L ) i = small to assess adequacy or
! e i robustness of 2-somple t-
va i i . test. We use a non-
s ’ 155 ‘ parametric test.
-; -; -: ; i 5 ] =3 =3 =1 L] ; H ]

n1:4,n2=4,N:8

1. Rank all 8 observations

Rank all 8 observations:

Yield 1531 1560 1586 165.0 1667 1722 1764 176.9
Runk 1 2 3 4 5 6 7 ]

If the presence of weeds reduces corn yields, we expect the ranks of the yields
from plots with weeds to be smaller as a group than the ranks from plots with-
oul weeds, We might compare the sums of the ranks from the two treatments:

Treatment  Sum of ranks

No weeds 23
Weeds 13

Example 6.3/..

Treatment  Sum of ranks

No weeds 23
Weeds 13

We want to test Hj,: no dwercm:c in distribution of yields
against the one-sided alternative
H,: yields are systematically higher in weed-free plots

The sum of ranks for the weed-free plots:

- m(N +1) go — [mmN +1)
bl 2 . 12
_ @O _ _

[(ANANI) f
= = 12 = 3.
3 18 2 V12 = 3464
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The continuity correction (page 379) acts as if the whole number 23 occupies the
entire interval from 22.5 1o 23.5. We calculate the Pvalue P(W = 23) as P(W
22.5) because the value 23 is included in the range whose probability we want. Here

is the calculation

(W= g 225-18
P(W=z22X25 =P =
I- Tw 1464 |
PiZ = 1.30)
(LGS

The continuity correction gives a result closer to the exact value P 0.0

Since p-value = 0.0968, we reject H under 10% significance level
And conclude that we have sufficient evidence to suggest weeds do reduce the yield of corn.
¥ R-code
X <- c(8.2, 9.4, 9.6, 9.7, 10.0, 14.5, 15.2, 16.1, 17.6, 19.4)

Y <- c(4.7, 4.9, 5.8, 6.4, 7.0, 7.3, 10.1, 11.2, 11.3, 13.2)
wilcox.test(X, Y)

¥ Explain the chi-squared distribution

Continuous random variable W is the sum of r independent squared observations on the standard
normal random variable Z

W =2 +25 + ..+ Z?

W has a chi-squared X2 distribution with  degrees of freedom

W~ x*(r)
Mean:
ww =T
Variance:
012;[/ =2r

The chi-squared goodness-of-fit test is applied to situations in which we want to determine
whether

A set of data may be looked upon as a random sample from a population having a given
distribution

In a random sample of size n observations,
Each observation can be classified into one of k distinct classes

O; = number of observations falling into class %
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0; = probability that an observation falls into class 7

nb; = E; = expected number of observations falling into class ¢
For large values of n, the distribution of the quantity

D DR 2 T
is chi-squared distribution with k& — 1 degrees of freedom

Essentially, sum up the squared differences between observed and expected frequency divided
by expected frequency

¥ Example

Using the following data set, determine whether the number of errors a compositor makes
in setting a galley of a type is random and follows a Poisson distribution.

Errors: 0o 1 2 3 4 5 6 7

8 9
Frequency: 18 53 103 107 82 46 18 10 2 1

Solution:

We shall estimate the population parameter mean of the Poisson distribution

Hy: The data come from the Polsson distribution with =3

Hj: The data do not come from the Poisson distribution with p=3
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No. of Errors Observed freq. P (X=x) Expected freq.
0 18 0.0498 219
1 53 0.1494 65.7
2 103 0.2240 9.6
3 107 0.2240 96
4 82 0.1680 738
5 46 0.1008 444
6 18 0.0504 222
7 10 0.0216 951
8 2 0.0081 3.56
o 1 0.0027 119

~ (18-219)%  (53—657)° (13—14.26)°
¥=""919 —*~ &7 *~*" Ti%

=591

Using probability, multiply by 440 (the total number of observations) to get expected frequency

Chi-squared approximation is adequate if the expected frequency of each class under the null
hypothesis is 5.

If not so, the class division must be redefined by combining adjacent classes so that the
expected frequency for each class becomes 5.

If need to combine classes (separate example):

' 7 10 0.0216 36 72
8 2 3'3 0.0081 1.7 'i" .
9 1 0.0027 1.18

(=297 (53-657)
219 65.7 6.5

Conclusion:

For a=0.05, xﬁ %56 12.59=5.91

Hence, the null hypothesis cannot be rejected.

X‘?est =591 < eritical = 12.59
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Hence, the data does come from a Poisson distribution with = 3

If model involves p parameters from the data set,
then the test statistic follows a distribution withdf =k —p — 1

¥ Explanation

Example

A new casino game involves rolling 3 dice. The winnings are directly proportional to the total number of sixes rolled. Suppose a gambler plays
the game 100 times, with the following observed counts:

Number of Sixes Number of Rolls
] 48
1 35
2 15
3 3

The casino becomes suspicious of the gambler and wishes to determine whether the dice are fair. What do they conclude?
If a die 1s fair, we would expect the probability of rolling a 6 on any given toss to be 1/6. Assuming the 3 dice are independent (the roll of one
die should not affect the roll of the others), we might assume that the number of sixes in three rolls 1s distributed Binomuial(3.1/6). To determine

whether the gambler's dice are fair, we may compare his results with the results expected under this distribution. The expected values for 0, 1, 2,
and 3 sixes under the Binotmial(3.1/6) distribution are the following:

Often, the null hypothesis involves fitting a model with parameters estimated from the
observed data.

In the above gambling example, for instance, we might wish to fit a binomial model to
evaluate the probability of rolling a six with the gambler's loaded dice.

We know that this probability is not equal to 1/6, so we might estimate this value by
calculating the probability from the data.

By estimating a parameter, we lose a degree of freedom in the chi-square test statistic. In
general, if we estimate d parameters under the null hypothesis with k possible counts the
degrees of freedom for the associated chi-square distribution will be k - 1 - d.
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The test statistic is: k : )
o 3 Z#if D

Tl

g

=l
+ The categories must be chosen in such a way that the expected
frequency for each category is at least 5. Under the null hypothesis
that the data arise from the hypothesized model, the distribution of
the test statistic x? is approximately chi-squared with k-p-1 degrees
of freedom, where p is the number of parameters whose values
were estimated from the data.

[
| v

+ The significance probability is given by the upper tail probability of
x2 (k-p-1) for values exceeding the observed test statistic. The
assessment of goodness of fit is based on quantifying the
discrepancy between the data observed and the values that are
expected under the model.

Chi-squared approximation is adequate if the expected frequency of each class under the null
hypothesis is > 5

If not so, the class division must be redefined by combining adjacent classes so that the expected
frequency for each class becomes > 5

expected under the model.

g "
[ \ _’.-{knf -l
| A

\ Dr Larry Gui

. —
| 7 =
f'

-test of Goodness of fit test Lol

XZ Distribution
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Degree of Probability of Exceeding the Critical Value
Freedom | (.gg 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.01
1 0.000 0004 0016 0102 0455 1.32 2.71 3.84 6.63
2 0020 0103 0211 0575  1.386 2.77 4.61 5.99 9.21
3 0.115 0352 0584 1212  2.366 4.11 6.25 7.81 1134
4 0297  0.711 1064 1923  3.357 5.39 7.78 9.49 13.28
5 0554 1145 1610 2675  4.351 6.63 9.24 11.07  15.09
6 0872 1635 2204 3455 5348 7.84 1064 | 1259  16.81
7 1239 2167 2833 4255  6.346 9.04 1202 | 1407 1848
8 1647 2733 3490 5071  7.344 1022 1336 | 1551  20.09
9 2088  3.325 4168  5.899 8343 1139 1468 | 1692  21.67
10 2558  3.840 4865 6737 9342 1255 1599 | 1831  23.21
11 3.053 4575 5578  7.584 10341 1370  17.28 | 1968 = 24.72
12 3.571 5226 6304  B8.438  11.340 1485 1855 | 2103  26.22
13 4107 5892  7.042 9299 12340 1598  19.81 | 2236  27.69
14 4660 6571  7.790 = 10.165 13339 1712  21.06 | 2368  29.14
15 5229  7.261 8547 11037 14339 1825 2231 | 2500 3058
16 5812  7.862 9312 11912 15338 1937 2354 | 2630  32.00
17 6.408 8672  10.085 12792 16338 2049 2477 | 2759 3341
18 7015 9390  10.865 13675 17.338 2160 2599 | 2887  34.80
19 7633 10117  11.651 14562 18338 2272 2720 | 3014  36.19
20 8.260  10.851 12.443 15452 19337  23.83 2841 | 3141 3757
22 9.542  12.338  14.041 17.240 21337 2604 3081 | 3392  40.29
24 10.856  13.848 15659  19.037 23337 2824 3320 | 3642  42.98
26 12198 15379  17.292 20.843 25336 3043 3556 | 3889 4564
28 13.565 16.928 18.939 22657 27336 3262 3792 | 4134  48.28
30 14.953 18493 20599 24478 29336 3480 4026 | 4377  50.89
40 22164 26509 29.051 33660 39335 4562 5180 | 5576  63.69
50 27707 34764 37.689 42942 49335 5633  63.17 | 6750  76.15
60 37485 43188 46.459 52294 59335 6698 7440 | 79.08  88.38
Not Significant Significant

¥ Use chi-squared statistics to perform goodness-of-fit test

¥ Example 6.5
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Example 6.5

A department store, A, has four competitors: B,C,D, and E. Store A hires a
consultant to determine if the percentage of shoppers who prefer each of the five stores
is the same. A survey of 1100 randomly selected shoppers is conducted, and the results
about which one of the stores shoppers prefer are below, Is there enough evidence using a

significance level o = _Iﬂ]_ﬁ to conclude that the proportions are really the same?

unafﬁﬂl Ck'*':.?

Store A | B|C|D|E
| Number of Shoppers | 262 | 234 | 204 | 190 | 210
Rragsmens
R b ar g9
5 7(‘-&,_,,} ﬁ. j\)a?m—lf’-‘a.
| Dr Larry Gui
(iii) @ = 0.05. kept 2
(iv) The degrees of freedom: k—1=5-1=4.
{v) The fest statistic can be caleulated using a table:
| v
Prefevents | o, 2% E O |O-E|(0-E)P | @£
Shoppers E
A 20% 0.2 1100 =220 262 | 42 1764 | B.0IB
B 20% 0.2 % 1100 = 220 | 234 14 1896 | 0.891
€ | 20% |02x1100=220[204| —16 | 256 | 1163
D 20% 02x1100=220 190 | —-30 | 900 | 4.091
E 20% |02x1100=220[210] —-10 | 100 | 0455
(iii) o = 0.05. kp-l = S-0-\=1%

(iv) The degrees of ﬁ‘eeﬂ@

—1=5-1=4.

AT { observed — expected )

expectod

(vi) From a =005 and k — 1 = 4, the eritical value is 9.458,

_y(O-Ep _
_z = 14.618.

{vil) 15 there enough evidenee to meject Hy? Sinee x¥ = 14.618 > 9.488, there is enough
statistical evidence to reject the null hypothesis and to believe that customers do not
prefer each of the five stores equally.

¥ Explain the use of chi-squared statistics to test for association between variables
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Chi-squared test for data in contingency tables:

Suppose that we are interested in testing two attributes represented by rxc contingency

table for association between them.

Al I 2o acille Sum
A2
1 fu fz Ay fic f.
2
i. fa fu £ fic i
T le. Ir2 f'1 ft\: ](r
Sum fi fa £ f.- M

The expected frequency for cell(z, 7) is obtained by

Multiplying the total of the row to which the cell belongs by the total of the column to which the cell
belongs

And then dividing by the grand total.

Expected trequency for cell (i, j)

>

Il
>
LS>

e =p.N=PHN
] ij ]

2z
2|

if
N

Sum of row x sum of column divide by total

Essentially e;; =

The test statistic is:

&= ZZ (fij ;jez‘j)
withdf = (r —1)(c—1)

¥ Example
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R1C1:

df :

MTH220 Summary Sheet

Low 63 42 15
“Interest in
Average 58 61 31
Statistics™
High 14 47 29

“Ability in Maths”

Low Average High

Solution:
Hy: ability in mathematics and statistics are independent

Hj:ability in mathematics and statistics are not independent

The expected frequencies for: row 1 =45, 50, 25
row 2 =5b625, 625, 3125

row 3 =3375, 37.5, 1855

2 2 o 15 787
[63-45" | 250 [29-18 75)
X¥==F +—5 tet"Em

=314 }x% n=13277

(63 + 58 + 14)(63 + 42 + 15)
360

=45

B-1)(3-1)=4
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