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Central Limit Theorem Applications (CLT)

If  are independent identically distributed random variables

With mean  and variance , then the sample mean

for large 

Mean

Variance

CLT Properties

If random samples are drawn from a population on different occasions, then the individual 
observations and the sample means will very probably be different. The sample mean is itself a 
random variable and its distribution is called the sampling distribution of the mean.

CLT states that: For large n, the sampling distribution of the mean for samples of size  from a 
population with mean  and variance  is approximately normal with mean  and variance 

 . The approximation improves as the sample size increases.

Sample Total

The distribution of the sample total has mean  and variance and is also approximately 
normal. This means that the distribution of the sum of a large number  of independent identically 
distributed random variables is approximately normal.

Expected value of sample total and sample mean

Variance of sample total and sample mean
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Standard error of the mean

This is the standard deviation of the sampling distribution of the mean

Normal approximation for Binomial Distribution

Binomial distribution  may be usefully approximated

By a normal distribution with same mean and variance, 

When both  and  are at least 5

(

Continuity Correction

When we approximate discrete random variable X by a normal random variable Y, we need to 
apply this continuity correction

Number line visualisation

Normal approximation for Poisson Distribution

Poisson distribution:  may be usefully approximated by

A normal distribution with same mean and variance, 

When  is at least 30

V ( ) =Xn
n

σ2

σ/ n

B(n,p)

N(np,npq)

np nq

q = 1 − p)

X ∼ B(n,p) ⇒ X ∼ N(μ = np,σ =2 np(1 − p))

P(X ≤ x) ≈ P(Y ≤ x+ 0.5)

P(X = x) ≈ P(x− 0.5 ≤ Y ≤ x+ 0.5)

Poisson(μ)

N(μ,μ)

μ
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Same continuity corrections must be applied here

Confidence interval for the mean of a normal distribution with known variance

Suppose  with a normal distribution 

The variance  is known,  is the unknown parameter

Let  be the data collected from , in a random sample size 

 is the sample mean

Sample mean provides an estimate of the population mean

However, different samples drawn from the same population will usually produce different 
estimates

Confidence interval for the parameter  with confidence coefficient 

or A  percent confidence interval

Generally, population standard deviation  is not known

We will have to use sample standard deviation  to estimate

This gives rise to the approximate large-sample confidence intervals

Z-value

e.g 95% confidence interval =  percent confidence interval

Where 

From normal distribution table (z-value table),

Find z-value for probability of 

Hence 

Confidence interval for the mean of a population with unknown distribution

We can use central limit theorem (CLT) for large sample approximation

Replacing population variance by sample variance

 confidence interval for population mean:

X ∼ Poisson(μ) ⇒ X ∼ N(μ,μ)

X N(μ,σ )2

σ2 μ
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n

σ
X z )α/2

n

σ

σ

s

(1 − 0.05)100

α = 0.05

z =α/2 z =0.05/2 z0.025

(1 − 0.025) = 0.975

z =α/2 1.96

100(1 − α)%
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Where  = sample standard deviation

Confidence interval for the mean of a normal distribution with unknown variance

Let  be a random sample from a normal distribution

With mean  not known and unknown variance 

To construct a  confidence interval for parameter ,

We must find  from t-table

Such that 

Corresponding to  degrees of freedom

Given random sample of size , sample mean  and sample standard deviation 

From a normal distribution with mean 

 confidence interval for 

Where  is the  quantile of t-distribution with  degrees of freedom

t-value

e.g 95% confidence interval =  confidence interval

Where 

From t-table,

Find t-value for quantile of 

Which is  column of 

 is degrees of freedom

e.g. sample size  degrees of freedom

Hence 

CI for large sample size and unknown variance

Where degree of freedom for  is large (not in the table), can approximate results with the Z-test 
instead

i.e. replace t value with z value

An approximate large-sample confidence interval for a proportion
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s
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s
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α 0.025
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Approximate  confidence interval for a proportion 

Obtained by observing  successes in a sequence of  independent Bernoulli trials

Each with probability of success 

e.g. proportion/ percentage of people in a population that own a smartphone

Where  is the estimate of 

and  is the  quantile of the standard normal distribution

This confidence interval is valid when both  and  are least 

100(1 − α)% p

x n

p

(p ,p ) =− + ( −p̂ z , +
n

(1 − )p̂ p̂
p̂ z )

n

(1 − )p̂ p̂

=p̂ x/n p

z (1 − α/2)

np n(1 − p) 5



MTH220 Summary Sheet 6

One-way ANOVA test

Total variability in the observations (Total sum of squares; SST)

is partitioned into 2 components:

The variation among the treatment means (treatment sum of squares; SSTR)

The variation among the experimental units within treatments (error sum of squares; SSE)

i.e. 
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The variation (variance) among the means of the 4 labs

The variation (variance) among the independent observations within a lab

Essentially,

SST = SSTR + SSE

Error of sum of squares (SSE) = SST - SSTR

Mean square for treatments

Found by dividing the sum of squares by the corresponding number of degrees of freedom

where  = number of treatments

Mean square error

An unbiased estimator of the common population variance  within each of the  treatments

where , if  for all 

F-statistic

We test the equality of the population means by comparing 2 variability components

SSTR = SS =treatment n ( −
i=1

∑
k

i xi )x 2

SSE = SS =error (n −
i=1

∑
k

i 1)si
2

MSTR =
k − 1
SSTR

k

σ2 k

MSE =
N − k

SSE

N = n =
i=1
∑
k

i kn n =i n i
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Within Groups Variability (SSE)

Variability about the individual sample means within the k groups of observations

Between Groups Variability (SSTR)

Variability among the k group means

We are interested to test the null hypothesis that the treatment means are equal

Hence our hypotheses are

The F-statistic is the ratio of the mean squares for treatment to error:

 No difference in treatment means

If , the null hypothesis is rejected and we can conclude that there are 
differences in the treatment means at the chosen level of significance

Explain the difference between type I and type II errors

Type I error

Rejecting the null hypothesis when null hypothesis is true

Probability of type I error is denoted by 

Type II error

Accepting the null hypothesis when null hypothesis is false

Probability of type II error is denoted by 

Define the critical regions

This is the rejection region for 

Size of the critical regions = probability of type I error = 

Where  is the level of significance of the test

Z Test

This is to test on the mean of a normal distribution, with known variance

i.e. mean  of a single normal population where variance of population  is known

The test statistic is given by:

H :0 μ =1 μ =2 ... = μk

H :1 at least one μ  is different from the othersi

F =o
MSE

MSTR

H :0

F >0 Fcritical

α

β

H0

α

α

μ σ2
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If the null hypothesis  is true

The probability that the test statistic  will fall between  and  is 

i.e. the probability of  falling in the regions  or  is 

This implies that if null hypothesis is true, it will be unusual and rare to encounter a sample with 
an observed test statistic that falls in the tails of the Z distribution

The sample value of  is considerably different from 

Hence  is false and should be rejected

One-tailed

Z =0
σ/ n

− μx 0

H :0 μ = μ0

Z0 −za/2 +za/2 1 − α

Z0 Z <0 −za/2 Z >0 +za/2 α/2

X μ0

H0
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In this case, if value of  exceeds 

Null hypothesis  will be rejected

Large sample testing of hypothesis about a population mean

Given a large sample size   from a population with mean 

Central limit theorem (CLT) can provide an approximate test of the null hypothesis

T Test

Test on the mean of a normal distribution, with unknown variance

Given a sample of size  from a normal distribution with mean  and unknown variance 

The test statistic is:

Where  is sample mean and  is the sample standard deviation

Two tailed

Z0 +zα

H0

n (> 30) μ

Z =
S/ n

− μX 0

n μ σ2

t =0
s/ n

− μX 0

X s



MTH220 Summary Sheet 11

One tailed

Using R

# mu argument gives value which you want to compare 
# with the sample mean 
t.test(dataset, mu=k)

By default, R performs a two-tailed test

For one-tailed, alternative argument must be set as "greater" or "less"
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t.test(dataset, mu=k, alternative="less", conf.level=0.95)

Addn.: default 95% confidence interval for population mean is included with output

To adjust size of CI, use conf.level argument

Example

dataset = c(171.6, 191.8, 178.3, 184.9, 189.1) 
t.test(dataset, mu=185, alternative="less", conf.level=0.95)

Construct confidence intervals in association with hypothesis testing

Null hypothesis  can be tested against two sided alternative hypothesis 

Through using data to construct a confidence interval  for parameter 

For a test at  significance level, a  confidence interval should be used

If  is not inside the confidence interval, the null hypothesis can be rejected in favour of the 
alternative hypothesis

If  is inside the CI, then there is insufficient evidence to reject the null hypothesis

Testing population proportions

Sometimes, instead of population means, we are interested in estimating the percentage (or 
proportion) of some group with a certain characteristics

Where 

Z as test statistic

Where 

Hence,

If null hypothesis  is true,

Then  is approximately normal with mean  and variance 

Then,

H :0 θ = θ0 H :1 θ = θ

(θ , θ )− + θ

α 100(1 − α)%

θ0

θ0

(p ,p ) =− + ( −p̂ z , +α/2
n

(1 − )p̂ p̂
p̂ z )α/2

n

(1 − )p̂ p̂

=p̂ X/n

Z =
σp̂

− pp̂ 0

σ =p̂
2 p(1 − p)/n

Z =
p (1 − p )/n0 0

− pp̂ 0

H :0 p = p0

X np0 np (1 −0 p )0
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If random variable X follows a binomial model with parameters  and 

Then approximate two-sided  confidence interval for  is:

Formulate the generic null and alternative hypotheses

Given two populations  and  with unknown means  and  

We want to test the difference between the 2 means

Population variances are assumed to be known with values  and 

Also assumed random variables  and  are normally distributed

If non-normal, assume conditions of central limit theorem applies

Sample size of  drawn from  with sample mean 

Sample size of  drawn from  with sample mean 

Assume both random samples are independent

and data within each sample are independently distributed with means  and 

A two-sided hypothesis test on the difference in population means as follows:

Where  is a specified difference

Test procedure is based on the distribution of the difference in sample means 

Since,

The appropriate test statistic is:

Z =
np (1 − p )0 0

x− np0

n p

(1 − α)100% p

−p̂ z ≤a/2
n

(1 − )p̂ p̂
p ≤ +p̂ za/2

n

(1 − )p̂ p̂

X1 X2 μ1 μ2

σ1
2 σ2

2

X1 X2

n1 X1 X1

n2 X2 X2

μ1 μ2

H :0 μ −1 μ =2 μ0

H :1 μ −1 μ =2  μ0

μ0

−X1 X2

−X1 ∼X2 N(μ −1 μ , +2
n1

σ1
2

)
n2

σ2
2

Z =0
+n1

σ1
2

n2

σ2
2

− − μX1 X2 0
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The denominator, i.e.:

Represents the standard error of the point estimate 

If objective is to test equality of the 2 means, then 

Possible scenarios for a hypothesis test

Confidence interval on the difference in means (variance known)

 confidence interval on  can be constructed as follows:

Where  and  are lower and upper confidence limits

 is the upper  percentage point of the standard normal distribution

 is the lower  percentage point of the standard normal distribution

Perform a two-sample t test

To test the difference in means of 2 normal distribution with unknown but equal variances

Useful in investigating whether the mean values of population are significantly different or not

Or whether the difference in means  is equal to a specified value 

2 normal populations with mean values 

Both populations have unknown and equal variance 

Random samples of size  drawn from pop 1 and size  from pop 2

Let  and  be sample means and sample variances respectively

Assumptions of the test

+
n1

σ1
2

n2

σ2
2

−X1 X2

μ =0 0

100(1 − α)% μ −1 μ2

(L ,L ) =− + − − (z ) , − + (z )
⎝

⎛
x1 x2 α/2 +

n1

σ1
2

n2

σ2
2

x1 x2 α/2 +
n1

σ1
2

n2

σ2
2

⎠

⎞

L− L+

zα/2 100α/2

−zα/2 100α/2

μ −1 μ2 μ0

μ  and μ1 2

σ =1
2 σ =2

2 σ2

n1 n2

{ , }X1 X2 {s , s }1
2

2
2
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That the variation in the 1st and 2nd population may be adequately modelled by a normal 
distribution with means  and  respectively and variance  (equal variance)

The adequacy of the normal model can be checked by graphical methods or 
statistical tests

Moderate departure from normality does not adversely affect the test procedure using 
t-statistics

That the observations on the two populations are independent of one another.

That the variance is the same in the two populations** (important)

Hypothesis test that population variances are equal

It is very unlikely that sample variances  and  are equal

The questions is: How pronounced must the difference between the 2 sample variances be 
before the assumption of equal underlying variances is thrown into doubt

Hence, we can perform a hypothesis test that the population variances are equal

before carrying out t test for the equality of the means

Weighted average of the two sample variances 

This is an estimate of the common variance

Test procedure

Under 

The following test statistic has t-distribution with  degrees of freedom

When sample size is large, i.e. both  and  exceed 30

Normal distribution procedure based on conditions of central limit theorem can be used

Decision making criteria

μ1 μ2 σ2

s1
1 s2

2

−X1 ∼X2 N(μ −1 μ , +2
n1

σ2
)

n2

σ2

sp
2

s =p
2

n + n − 21 2

(n − 1)s + (n − 1)s1 1
2

2 2
2

H :0 μ −1 μ =2 μ0

n +1 n −2 2

t =0 ∼
sp +

n1

1
n2

1

− − μX1 X2 0
tn +n −21 2

n1 n2
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Two-sample t-interval

If  and  are the same sample sizes, and  and  are the sample means of two 
independent samples from normal distributions with means  and  and common variance

Then  confidence interval for the difference between means ( ) is given 
by:

 

Where  is the -quantile of 

and  is the pooled estimate of the common standard deviation

Perform a paired t test

To test for the mean difference in a matched pair of observations

e.g. observations before patient takes a pill vs observations after patient takes a pill

 is the difference in the  matched pair of observation 

Where,

 → the  observation before an entity is subjected to the treatment

 → the  observation after the entity is subjected to the treatment

Investigate the null hypothesis that the mean difference of the matched pair of observation is 0 or 
any specified difference value

Assuming that the observed differences  are independent observations on a 
normal random variable 

With unknown mean  and unknown variance 

Let 

n1 n2 X1 X2

μ1 μ2

100(1 − α)% μ −1 μ2

(d ,d ) =− + ( −X1 −X2 (t )(s ) ,  −α/2 p +
n1

1
n2

1
X1 −X2 (t )(s ) )α/2 p +

n1

1
n2

1

tα/2 (1 − α/2) t(n +n −2)1 2

sp

Di ith (X ,Y )i i

D =i X −i Yi

Xi ith

Yi ith

d , i =i 1, 2, ...,n

μ σ2

H :0 μ =d μ0



MTH220 Summary Sheet 17

Then the following statistic follows a t-distribution with d.f. = 

One-tailed or two-tailed t test can be carried out depending on the alternative hypothesis

Confidence interval for the mean difference 

Suppose that the differences are normally distributed with mean 

Given a random sample of  pairs of observations with differences  

Sample mean  and sample standard deviation 

The  confidence interval for the mean difference  is given by:

Where  is the -quantile of 

This confidence interval is exact (?)

Explain the concept and interpretation of p-values

The p-value is a number ( )

Also called the significance probability (SP)

Definition:

Corresponding to an observed value of a test statistic, the SP is the lowest level of significance 
at which the null hypothesis could have been rejected.

This quantifies the extent to which the data cast doubt on the null hypothesis

The lower the SP, the more evidence the data provides against the null hypothesis

The higher the SP, the more the data supports the null hypothesis

Procedure

1. Determine the null and alternative hypothesis.

2. Decide what data to collect.

3. Determine a suitable test statistic and its null distribution.

4. Collect data and calculate the observed value of the test statistic.

5. Identify all other values of the test statistic that are at least as extreme, in relation 
to the null hypothesis, as the value that was actually observed.

n− 1

s/ n

− μd 0

d

d

n d ,d , ...,d1 2 n

d s

100(1 − α)% d

(d ,d ) =− + ( −d t , +α/2
n

sd
d t )α/2

n

sd

tα/2 (1 − α/2) t(n− 1)

p
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6. Calculate the significance probability, which is the probability, under the null hypothesis, of 
those values of the test statistic identified in Step 5.

7. Interpret the significance probability.

8. Report clearly the conclusion to be drawn from your test

Rough interpretations

Comparing Two Proportions

For observations made on 2 independent binomial random variables

We can test for the equality of two proportions

Where,

The test statistic is:

For large values of  and , 

An approximate null distribution of  is:

Where 

Hence,

X ∼1 B(n ,p ) X ∼1 1 2 B(n ,p )2 2

H :0 p =1 p2

D = −
n1

X1

n2

X2

n1 n2

D

N(0, (1 −p̂ )( +p̂
n1

1
))

n2

1

=p̂
n + n1 2

X +X1 2

N(0, (1 −
n + n1 2

X +X1 2 )( +
n + n1 2

X +X1 2

n1

1
))

n2

1
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Explain linear regression model

Statistical models that reflect the way in which variation in an observed variable (e.g. height) 
changes with one or more other variables (e.g. age) are called regression models.

Regression analysis is the process of determining how a variable  is related to one, or more 
variables 

There are several terminologies for 

 inputs / factors / regressors / predictors / explanatory variables

 output / response / dependent variable

Usefulness of linear regression model

We can study the relationship between variables 

and try to explain or predict the behaviour of the response variable in terms of the behaviour 
of one or more other explanatory variables

Regression models

General regression model

When the distribution of r.v.  is related to the value taken by some associated variable 

Then the relationship can be represented by a general regression model:

Where  represents some function

and ( ) s are independent r.v. with zero mean

Regression Curve

Linear Regression Model

Where Y depends linearly on x

Random variables  are called residuals

They are independent with zero mean and constant variance 

Regression line

Explain the method of least squares

Y

X ,X ,X , ...,X1 2 3 k

X :

Y :

Y

X

Y =i h(X ) +i Wi

h()

Wi

Y = h(X)

Y =i α+ βx +i Wi

Wi

σ2

y = α+ βx
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Suppose a linear relation between variables X and Y in the form of:

Parameters  and  are unknown and need to be estimated

The error term  is assumed to be independent, normally distributed with mean 0 and variance 

 is the y-intercept of the line

 is the gradient of the line

 is the amount of increase (or decrease) in the deterministic component of Y for every 1-unit 
increase in X.

The task is to select suitable values for the parameters  and  that will best fit the given set of  
observations

Method of least squares

Let  be n-observations of the random variables 

Least square estimate of the regression line is: 

Least square estimate  of the gradient parameter  is:

Least square estimate  of the constant term  is given by:

Sum of Squares of deviations

Use equations from above to construct least squares line

Y =i α+ βx+ ω

α β

ω

σ2

α

β

β

α β n

(x ,y ), (x ,y ), ..., (x ,y )1 1 2 2 n n (X,Y )

y = +α̂ xβ̂

β̂ β

=β̂
Sxx

Sxy

α̂ α

=α̂ −y β̂x

S =xx (x −∑ i ) =x 2 x −∑ i
2

n

( x )∑ i
2

S =yy (y −∑ i ) =y 2 y −∑ i
2

n

( y )∑ i
2

S =xy (x −∑ i )(y −x i ) =y x y −∑ i i
n

( x )( y )∑ i ∑ i
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Compute Pearson correlation coefficient

A measure of strength of linear association between X and Y is given by the Pearson 
correlation coefficient, 

 is dimensionless 

Sign of  indicates whether the relationship between 2 variables is positive or negative

Absolute value of  gives a measure of strength of linear association between the variables

Further  is from zero, the stronger the relationship

i.e. closer to +1 or -1

R code

cor(x, y, method = "")

Coefficient of determination

Another way to measure the usefulness of the model is to measure the contribution of X in 
predicting Y

Interpreted as "proportion of total sample variability explained by the linear relationship"

We can calculate how much the errors of prediction of Y were reduced by using the information 
provided by X

This is the square of Pearson correlation coefficient

Interpret various strengths of correlation

Correlation does not equal causation

Although there might be a reasonably strong association between 2 variables

The data does not say anything about why they correlate to each other

There may be a multitude of explanations as to why

e.g. 

Changes in X cause changes in Y.

y = +α̂ xβ̂

r

r =
S ⋅ Sxx yy

Sxy

r

r

r

r

r2
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Changes in Y cause changes in X.

Changes in some third variable, Z, independently cause changes in X and Y.

The observed relationship between X and Y is just coincidence, with no causal explanation at 
all.

A scatterplot cannot determine which of these explanations is valid

Explain the difference between Pearson correlation coefficient and Spearman rank correlation 
coefficient

The spearman method replaces original data by their ranks

Then calculates the Pearson correlation coefficient for the ranks

The Pearson correlation coefficient is a measure of strength of linear association,

While the Spearman rank correlation coefficient is a measure of monotonic association 
(increasing or decreasing relationship)

Advantage of spearman's is that it requires only the rank of the data

Analyse results of Wilcoxon signed rank test

Used to compare 2 probability distributions when a paired difference design is used

e.g. consumer preferences for two competing products are often compared by having each of a 
sample of consumers rate both products

Ratings are paired on each consumer

Formulated hypotheses are:

 The probability distributions of the ratings for products A and B are identical.

 The probability distributions of the ratings differ for the two products.

We replace the individual differences by ranks and test for the zero difference

1. Obtain a data vector  of differences with  deleted.

2. Order the absolute differences from least to greatest allocating  rank to the  
absolute differences.

3. Introduce the sign difference and compute the statistic sum of positive ranks.

4. Obtain SP and state the conclusion.

Detailed explanation

1. Obtain  which is all the differences  between  and 

2. Take the absolute values of all  

3. Rank the values from smallest to largest

H :0

H :1

d ,d , ...,d1 2 n 0s

ith ith

di d ,d , ...,d1 2 n x y

di
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i.e. Given 

Rank in ascending order is 

4. Sum up the ranks of the positive differences ( )

Positive differences here are 

With respective ranks of 3, 4

Hence,   

5. Determine the mean of  with sample size 

6. Is  far from  ?

Conclusion

Wilcoxon signed rank test rejects the null hypothesis that there are no systematic 
differences within pairs

WHEN the rank sum  is far from its mean

Use p-value, critical regions etc.

Under the null hypothesis of zero median difference

For sample size of  (excluding any zero differences)

Random variable  

Observed value: Wilcoxon test statistic 

Mean (Expectation)

Variance

Distribution of 

d =1 3,d =2 −1,d =3 4,d =4 −2

d ,d ,d ,d2 4 1 3

W+

d ,d1 3

W =+ 7

W+ n

E(W ) =+ =
4

4(4 + 1)
5

W+ E(W )+

W+

n

W+

ω+

E(W ) =+ 4
n(n+ 1)

V (W ) =+ 24
n(n+ 1)(2n+ 1)

Z =
SD(W )+

W −E(W )+ +
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is approximately standard normal

**The normal approximation is generally adequate as long as the sample size n is at least 16

Example 6.1

Since we cannot be sure that the scores are normally distributed, we use non-parametric 
test instead

Rank: 

Sum of positive ranks (SP)( ) = 4 + 5 = 9

−d ,−d ,−d ,+d ,+d4 5 2 1 3

W+

μ =W+ =
4

5(5 + 1)
7.5
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Since  is discrete, we need to use continuity corrections to approximate its normal 
distribution

We treat  as occupying the interval from 8.5 to 9.5

Lastly, standardise the equation:

Since probability is not small, 

 is not extremely large compared to 

Hence, we do not reject  and conclude that there is insufficient evidence to illustrate 
an improvement in the child's ability to retell the story.

Example 6.2 (practice)

Analyse results of Mann-Whitney test

This test is an alternative to testing two independent groups of data when the two-sample t test 
may not be applicable because of lack of normality.

This test can be used to test the null hypothesis that the distributions of the populations from 
which two independent samples (A and B) were drawn are identical.

Test statistic is  , the sum of the ranks for sample A

σ =W+ =
24

5(5 + 1)(2(5) + 1)
=

24
330

3.708

W ≈+ W ∼N
+ N(7.5, 3.708 ) approx.2

W+

P(W ≥+ 9) ≈ P(W ≥+ 8.5)

W ≥+ 9

P(W ≥+ 8.5) = P( ≥
3.708

W − 7.5+ )
3.708
8.5 − 7.5

P(Z ≥ 0.27) = 0.39358 ≈ 0.3

W =+ 9 μ =W+ 7.5

H0

UA
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Where  and  are the respective sample sizes

Approximation is adequate if both sample sizes are at least 8 - 10

Steps

1. Pool the two samples and then sort the combined data in ascending order.

2. Allocate a rank to each data value, the smallest being given rank 1. As usual, if two or 
more data values are equal, allocate the average of ranks to each.

e.g. rank 10 and 11 = 10.5

3. Add up the ranks for each sample. Let:

 = sum of ranks for sample A

 = sum of ranks for sample B

4. Very small or very large  imply the rejection of the null hypothesis

They suggest that the A-values are "too frequently" smaller than or larger than B-values

Observed value of  may be compared with the null distribution of  to get the 
significance probability (SP) for the test

Example 6.3 

U ≈A N( , )
2

n (n + n + 1)A A B

12
n n (n + n + 1)A B A B

nA nB

UA

UB

U +A U =B (n +
2
1

A n )(n +B A n +B 1)

UA

UA UA
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1. Rank all 8 observations

n =1 4,n =2 4,N = 8
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Since p-value = 0.0968, we reject  under 10% significance level

And conclude that we have sufficient evidence to suggest weeds do reduce the yield of corn.

R-code

X <- c(8.2, 9.4, 9.6, 9.7, 10.0, 14.5, 15.2, 16.1, 17.6, 19.4) 
Y <- c(4.7, 4.9, 5.8, 6.4, 7.0, 7.3, 10.1, 11.2, 11.3, 13.2) 
wilcox.test(X, Y)

Explain the chi-squared distribution

Continuous random variable W is the sum of r independent squared observations on the standard 
normal random variable Z

W has a chi-squared  distribution with  degrees of freedom

Mean:

Variance:

The chi-squared goodness-of-fit test is applied to situations in which we want to determine 
whether

A set of data may be looked upon as a random sample from a population having a given 
distribution

In a random sample of size  observations,

Each observation can be classified into one of  distinct classes

 = number of observations falling into class 

H0

W = Z +1
2 Z +2

2 ... + Zr
2

χ2 r

W ∼ χ (r)2

μ =W r

σ =W
2 2r

n

k

Oi i
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 = probability that an observation falls into class 

 =  = expected number of observations falling into class 

For large values of , the distribution of the quantity 

is chi-squared distribution with  degrees of freedom

Essentially, sum up the squared differences between observed and expected frequency divided 
by expected frequency

Example

θi i

nθi Ei i

n

χ =2 ∼
1

∑
k

Ei

(O −E )i i
2

χ (k −2 1)

k − 1
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Using probability, multiply by 440 (the total number of observations) to get expected frequency

Chi-squared approximation is adequate if the expected frequency of each class under the null 
hypothesis is 5. 

If not so, the class division must be redefined by combining adjacent classes so that the 
expected frequency for each class becomes 5.

If need to combine classes (separate example):

Conclusion:

χ =test
2 5.91 < χ =critical

2 12.59
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Hence, the data does come from a Poisson distribution with 

If model involves  parameters from the data set, 

then the test statistic follows a distribution with 

Explanation

Often, the null hypothesis involves fitting a model with parameters estimated from the 
observed data. 

In the above gambling example, for instance, we might wish to fit a binomial model to 
evaluate the probability of rolling a six with the gambler's loaded dice. 

We know that this probability is not equal to 1/6, so we might estimate this value by 
calculating the probability from the data. 

By estimating a parameter, we lose a degree of freedom in the chi-square test statistic. In 
general, if we estimate d parameters under the null hypothesis with k possible counts the 
degrees of freedom for the associated chi-square distribution will be k - 1 - d.

μ = 3

p

df = k − p − 1
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Chi-squared approximation is adequate if the expected frequency of each class under the null 
hypothesis is 

If not so, the class division must be redefined by combining adjacent classes so that the expected 
frequency for each class becomes 

 

 Distribution

≥ 5

≥ 5

χ2
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Use chi-squared statistics to perform goodness-of-fit test

Example 6.5
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Explain the use of chi-squared statistics to test for association between variables
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The expected frequency for cell  is obtained by 

Multiplying the total of the row to which the cell belongs by the total of the column to which the cell 
belongs

And then dividing by the grand total.

Essentially 

Sum of row x sum of column divide by total

The test statistic is:

With 

Example

(i, j)

e =ij N

f fi j

χ =2

i

∑
j

∑
eij

(f − e )ij ij
2

df = (r − 1)(c− 1)



MTH220 Summary Sheet 36

R1C1:

=
360

(63 + 58 + 14)(63 + 42 + 15)
45

df :

(3 − 1)(3 − 1) = 4


